
TREE
Trees are very flexible, versatile and powerful non-liner data structure that can be used to represent data items

possessing hierarchical relationship between the grand father and his children and grand children as so on.

A tree is an ideal data structure for representing hierarchical data. A tree can be theoretically defined as a finite set of

one or more data items (or nodes) such that :

1. There is a special node called the root of the tree.

2. Removing nodes (or data item) are partitioned into number of mutually exclusive

(i.e., disjoined) subsets each of which is itself a tree, are called sub tree.

BASIC TERMINOLOGIES
Root is a specially designed node (or data items) in a tree. It is the first node in the hierarchical arrangement of the

data items. ‘A’ is a root node in the Fig. 8.1. Each data item in a tree is called a node. It specifies the data information

and links (branches) to other data items.

Binary Tree

Consider a binary tree T in Fig. 8.3. Here ‘A’ is the root node of the binary tree T. Then ‘B’ is the left child of ‘A’ and

‘C’ is the right child of ‘A’ i.e., ‘A’ is a father of ‘B’ and ‘C’. The node ‘B’ and ‘C’ are called brothers, since they are

left and right child of the same father. If a node has no child then it is called a leaf node. Nodes P,H,I,F,J are leaf node

in Fig. 8.3.

The tree is said to be strictly binary tree, if every non-leaf made in a binary tree has non-empty left and right sub
trees. A strictly binary tree with n leaves always contains 2n–1 nodes. The tree in Fig. 8.4 is strictly binary tree,
whereas the tree in Fig. 8.3 is not. That is every node in the strictly binary tree can have either no children or two
children. They are also called 2-tree or extended binary tree.

Binary Tree Representation
This section discusses two ways of representing binary tree T in memory:

1. Sequential representation using arrays

2. Linked list representation

ARRAY REPRESENTATION
An array can be used to store the nodes of a binary tree. The nodes stored in an array of memory can be accessed

sequentially

= 2*1 + 2

 = 4

i.e., A[4] is the right child of B, which is E.

4. If the left child is at array index n, then its right brother is at (n + 1). Similarly, if the right child is at index n, then

its left brother is at (n – 1).

The array representation is more ideal for the complete binary tree. The Fig. 8.8 is not a complete binary tree. Since

there is no left child for node C, i.e., A[5] is vacant. Even though memory is allocated for A[5] it is not used, so

wasted unnecessarily.

LINKED LIST REPRESENTATION
The most popular and practical way of representing a binary tree is using linked list

(or pointers). In linked list, every element is represented as nodes. A node consists of three

fields such as :

(a) Left Child (LChild)

(b) Information of the Node (Info)

(c) Right Child (RChild)

 4. Deleting a Node

 5. Searching for a Node

TRAVERSING BINARY TREES RECURSIVELY

Tree traversal is one of the most common operations performed on tree data structures. It is a way in which each

node in the tree is visited exactly once in a systematic manner. There are three standard ways of traversing a binary

tree. They are:

1. Pre Order Traversal (Node-left-right)

2. In order Traversal (Left-node-right)

3. Post Order Traversal (Left-right-node)

PRE ORDERS TRAVERSAL RECURSIVELY

To traverse a non-empty binary tree in pre order following steps one to be processed

1. Visit the root node

2. Traverse the left sub tree in preorder

3. Traverse the right sub tree in preorder

That is, in preorder traversal, the root node is visited (or processed) first, before traveling through left and right sub

trees recursively.

void preorder (Node * Root)

{

 If (Root != NULL)

 {

 printf (“%d\n”,Root → Info);

 preorder(Root → L child);

 preorder(Root → R child);

 }

 }

IN ORDER TRAVERSAL RECURSIVELY

The in order traversal of a non-empty binary tree is defined as follows:

1. Traverse the left sub tree in order

2. Visit the root node

3. Traverse the right sub tree in order

In order traversal, the left sub tree is traversed recursively, before visiting the root. After visiting the root the right

sub tree is traversed recursively, in order fashion. The procedure for an in order traversal is given below :

void inorder (NODE *Root)

{

If (Root != NULL)

{

inorder(Root → L child);

printf (“%d\n”,Root → info);

inorder(Root → R child);

}

}

The in order traversal of a binary tree in Fig. 8.12 is D, B, H, E, I, A, F, C, J, G.

POST ORDER TRAVERSAL RECURSIVELY

The post order traversal of a non-empty binary tree can be defined as :

1. Traverse the left sub tree in post order

2. Traverse the right sub tree in post order

3. Visit the root node

In Post Order traversal, the left and right sub tree(s) are recursively processed before visiting the root.

void postorder (NODE *Root)

{

If (Root != NULL)

{

postorder(Root → Lchild);

postorder(Root → Rchild);

printf (“%d\n”,Root à info);

}

}

The post order traversal of a binary tree in Fig. 8.12 is D, H, I, E, B, F, J, G, C, A

BINARY SEARCH TREES

A Binary Search Tree is a binary tree, which is either empty or satisfies the following properties :

1. Every node has a value and no two nodes have the same value (i.e., all the values are unique).

2. If there exists a left child or left sub tree then its value is less than the value of the root.

3. The value(s) in the right child or right sub tree is larger than the value of the root node.

All the nodes or sub trees of the left and right children follows above rules. The Fig. 8.14 shows a typical binary search

tree. Here the root node information is 50. Note that the right sub tree node’s value is greater than 50, and the left sub

tree nodes value is less than 50. Again right child node of 25 has large values than 25 and left child node has small

values than 25. Similarly right child node of 75 has large values than 75 and left child node has small values that 75

and so on.

The operations performed on binary tree can also be applied to Binary Search Tree (BST). But in this section we

discuss few other primitive operators performed on BST :

1. Inserting a node

2. Searching a node

3. Deleting a node

Another most commonly performed operation on BST is, traversal. The tree traversal algorithm (pre-order, post-order

and in-order) are the standard way of traversing a binary search tree.

INSERTING A NODE
A BST is constructed by the repeated insertion of new nodes to the tree structure. Inserting a node in to a tree is

achieved by performing two separate operations.

1. The tree must be searched to determine where the node is to be inserted.

2. Then the node is inserted into the tree.

Suppose a “DATA” is the information to be inserted in a BST.

Step 1: Compare DATA with root node information of the tree

(i) If (DATA < ROOT →Info)

Proceed to the left child of ROOT

(ii) If (DATA > ROOT →Info)

Proceed to the right child of ROOT

Step 2: Repeat the Step 1 until we meet an empty sub tree, where we can insert the DATA in place of the empty sub

tree by creating a new node.

Step 3: Exit

For example, consider a binary search tree in Fig. 8.14. Suppose we want to insert a DATA = 55 in to the tree, then

following steps one obtained :

1. Compare 55 with root node info (i.e., 50) since 55 > 50 proceed to the right sub tree of 50.

2. The root node of the right sub tree contains 75. Compare 55 with 75. Since 55 <75 proceed to the left sub tree of

75.

3. The root node of the left sub tree contains 60. Compare 55 with 60. Since 55 < 60 proceed to the right sub tree of

60.

4. Since left sub tree is NULL place 55 as the left child of 60 as shown in Fig. 8.15.

ALGORITHM
NEWNODE is a pointer variable to hold the address of the newly created node. DATA is the information to be pushed.

1. Input the DATA to be pushed and ROOT node of the tree.

2. NEWNODE = Create a New Node.

3. If (ROOT == NULL)

(a) ROOT=NEW NODE

4. Else If (DATA < ROOT Info)

(a) ROOT = ROOT → Lchild

(b) GoTo Step 6

5. Else If (DATA > ROOT → Info)

(a) ROOT = ROOT → Rchild

(b) GoTo Step 7

6. If (DATA < ROOT → Info)

(a) ROOT → LChild = NEWNODE

7. Else If (DATA > ROOT → Info)

(a) ROOT → RChild = NEWNODE

8. NEW NODE → Info = DATA

9. NEW NODE → LChild = NULL

10. NEW NODE → RChild = NULL

11. EXIT

SEARCHING A NODE
Searching a node was part of the operation performed during insertion. Algorithm to search as element from a binary

search tree is given below.

ALGORITHM
1. Input the DATA to be searched and assign the address of the root node to ROOT.

2. If (DATA == ROOT → Info)

(a) Display “The DATA exist in the tree”

(b) GoTo Step 6

3. If (ROOT == NULL)

(a) Display “The DATA does not exist”

(b) GoTo Step 6

4. If(DATA > ROOT→Info)

(a) ROOT = ROOT→RChild

(b) GoTo Step 2

5. If(DATA < ROOT→Info)

(a) ROOT = ROOT→Lchild

(b) GoTo Step 2

6. Exit

Suppose a binary search tree contains n data items, A1, A2, A3………..An. There are n! Permutations of the n items.

The average depth of the n! tree is approximately C log 2 n, where C=1.4. The average running time f (n) to search

for an item in a binary tree with n elements is proportional to Log2 n, that is f (n) = O(Log2 n)

DELETING A NODE
This section gives an algorithm to delete a DATA of information from a binary search tree. First search and locate the

node to be deleted. Then any one of the following conditions arises:

1. The node to be deleted has no children

2. The node has exactly one child (or sub tress, left or right sub tree)

3. The node has two children (or two sub tress, left and right sub tree)

Suppose the node to be deleted is N. If N has no children then simply delete the node and place its parent node by the

NULL pointer.

If N has one child, check whether it is a right or left child. If it is a right child, then find the smallest element from the

corresponding right sub tree. Then replace the smallest node information with the deleted node. If N has a left child,

find the largest element from the corresponding left sub tree. Then replace the largest node information with the

deleted node.

The same process is repeated if N has two children, i.e., left and right child. Randomly select a child and find the

small/large node and replace it with deleted node. NOTE that the tree that we get after deleting a node should also be

a binary search tree.

Deleting a node can be illustrated with an example. Consider a binary search tree in Fig. 8.15. If we want to delete 75

from the tree, following steps are obtained:

Step 1: Assign the data to be deleted in DATA and NODE = ROOT.

Step 2: Compare the DATA with ROOT node, i.e., NODE, information of the tree. Since (50 < 75)

NODE = NODE → RChild

Step 3: Compare DATA with NODE. Since (75 = 75) searching successful. Now we have located the data to be

deleted, and delete the DATA. (See Fig. 8.16)

Step 4: Since NODE (i.e., node where value was 75) has both left and right child choose one. (Say Right Sub Tree) -

If right sub tree is opted then we have to find the smallest node. But if left sub tree is opted then we have to find the

largest node.

Step 5: Find the smallest element from the right sub tree (i.e., 80) and replace the node with deleted node. (See Fig.

8.17)

 Fig 8.19

 Step 8: Exit.

ALGORITHM

NODE is the current position of the tree, which is in under consideration. LOC is the place where node is to be

replaced. DATA is the information of node to be deleted.

1. Find the location NODE of the DATA to be deleted.

2. If (NODE = NULL)

(a) Display “DATA is not in tree”

(b) Exit

3. If(NODE → Lchild = NULL)

(a) LOC = NODE

(b) NODE = NODE → RChild

4. If(NODE → RChild= =NULL)

(a) LOC = NODE

(b) NODE = NODE → LChild

5. If((NODE → Lchild not equal to NULL) && (NODE → Rchild not equal to NULL))

(a) LOC = NODE → RChild

6. While(LOC → Lchild not equal to NULL)

(a) LOC = LOC → Lchild

7. LOC → Lchild = NODE → Lchild

8. LOC → RChild= NODE → RChild

9. Exit

AVL TREES
This algorithm was developed in 1962 by two Russian Mathematicians, G.M. Adel’son Vel’sky and E.M. Landis;

here the tree is called AVL Tree. An AVL tree is a binary search tree in which the left and right sub tree of any node

may differ in height by at most 1, and in which both the sub trees are themselves AVL Trees. Each node in the AVL

Tree possesses any one of the following properties:

(a) A node is called left heavy, if the largest path in its left sub tree is one level larger than the largest path of its right

sub tree.

(b) A node is called right heavy, if the largest path in its right sub tree is one level larger than the largest path of its

left sub tree.

(c) The node is called balanced, if the largest paths in both the right and left sub trees are may differ in height by at

most 1. Fig. 8.43 shows some example for AVL trees.

Balance factor
The balance factor of a AVL tree may be 1,0 and -1

1 when the node is left heavy i.e. left height is one more than right height

0 when both left and right height are equal

-1 when the node is right heavy i.e. right height is one more than left height

The construction of an AVL Tree is same as that of an ordinary binary search tree except that after the addition of

each new node, a check must be made to ensure that the AVL balance conditions have not been violated. If the new

node causes an imbalance in the tree, some rearrangement of the tree’s nodes must be done. Following algorithm will

insert a new node in an AVL Tree:

ALGORITHM

1. Insert the node in the same way as in an ordinary binary search tree.

2. Trace a path from the new nodes, back towards the root for checking the height difference of the two sub trees of

each node along the way.

3. Consider the node with the imbalance and the two nodes on the layers immediately below.

4. If these three nodes lie in a straight line, apply a single rotation to correct the imbalance.

5. If these three nodes lie in a dogleg pattern (i.e., there is a bend in the path) apply a double rotation to correct the

imbalance.

6. Exit.

The above algorithm will be illustrated with an example shown in Fig. 8.44, which is an unbalance tree. We have to

apply the rotation to the nodes 40, 50 and 60 so that a balance tree is generated. Since the three nodes are lying in a

straight line, single rotation is applied to restore the balance.

While tracing the path, first imbalance is detected at node 60. We restrict our attention to this node and the two nodes

immediately below it (40 and 50). These three nodes form a dogleg pattern. That is there is bend in the path. Therefore

we apply double rotation to correct the balance. A double rotation, as its name implies, consists of two single rotations,

which are in opposite direction. The first rotation occurs on the two layers (or levels) below the node where the

imbalance is found (i.e., 40 and 50). Rotate the node 50 up by replacing 40, and now 40 become the child of 50 as

shown in Fig. 8.47.

Balanced binary tree is a very useful data structure for searching the element with less time. An unbalanced binary

tree takes O(n) time to search an element from the tree, in the worst case. But the balanced binary tree takes only

O(Log n) time complexity in the worst case.

